Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent observations of caustic-crossing galaxies at redshift 0.7 ≲ z ≲ 1 show a wealth of transient events. Most of them are believed to be microlensing events of highly magnified stars. Earlier work predicts such events should be common near the critical curves (CCs) of galaxy clusters (“near region”), but some are found relatively far away from these CCs (“far region”). We consider the possibility that substructure on milliarcsecond scales (few parsecs in the lens plane) is boosting the microlensing signal in the far region. We study the combined magnification from the macrolens, millilenses, and microlenses (“3M lensing”), when the macromodel magnification is relatively low (common in the far region). After considering realistic populations of millilenses and microlenses, we conclude that the enhanced microlensing rate around millilenses is not sufficient to explain the high fraction of observed events in the far region. Instead, we find that the shape of the luminosity function (LF) of the lensed stars combined with the amount of substructure in the lens plane determines the number of microlensing events found near and far from the CC. By measuringβ(the exponent of the adopted power law LF,dN/dL = ϕ(L)∝(1/L)β), and the number density of microlensing events at each location, one can create a pseudoimage of the underlying distribution of mass on small scales. We identify two regimes: (i) positive-imaging regime whereβ > 2 and the number density of events is greater around substructures, and (ii) negative-imaging regime whereβ < 2 and the number density of microlensing events is reduced around substructures. This technique opens a new window to map the distribution of dark-matter substructure down to ∼103 M⊙. We study the particular case of seven microlensing events found in the Flashlights program in the Dragon arc (z = 0.725). A population of supergiant stars having a steep LF withβ = 2.55−0.56+0.72fits the distribution of these events in the far and near regions. We also find that the new microlensing events from JWST observations in this arc imply a surface mass density substructure of Σ∗= 54M⊙pc−2, consistent with the expected population of stars from the intracluster medium. We identify a small region of high density of microlensing events, and interpret it as evidence of a possible invisible substructure, for which we derive a mass of ∼1.3 × 108 M⊙(within its Einstein radius) in the galaxy cluster.more » « less
-
Abstract A tight positive correlation between the stellar mass and the gas-phase metallicity of galaxies has been observed at low redshifts. The redshift evolution of this correlation can strongly constrain theories of galaxy evolution. The advent of JWST allows probing the mass–metallicity relation at redshifts far beyond what was previously accessible. Here we report the discovery of two emission line galaxies at redshifts 8.15 and 8.16 in JWST NIRCam imaging and NIRSpec spectroscopy of targets gravitationally lensed by the cluster RX J2129.4+0005. We measure their metallicities and stellar masses along with nine additional galaxies at 7.2 <zspec< 9.5 to report the first quantitative statistical inference of the mass–metallicity relation atz≈ 8. We measure ∼0.9 dex evolution in the normalization of the mass–metallicity relation fromz≈ 8 to the local universe; at a fixed stellar mass, galaxies are 8 times less metal enriched atz≈ 8 compared to the present day. Our inferred normalization is in agreement with the predictions of FIRE simulations. Our inferred slope of the mass–metallicity relation is similar to or slightly shallower than that predicted by FIRE or observed at lower redshifts. We compare thez≈ 8 galaxies to extremely low-metallicity analog candidates in the local universe, finding that they are generally distinct from extreme emission line galaxies or “green peas,” but are similar in strong emission line ratios and metallicities to “blueberry galaxies.” Despite this similarity, at a fixed stellar mass, thez≈ 8 galaxies have systematically lower metallicities compared to blueberry galaxies.more » « less
-
In this work, we present a constraint on the abundance of supergiant (SG) stars at redshiftz ≈ 1, based on recent observations of a strongly lensed arc at this redshift. First we derived a free-form model of MACS J0416.1-2403 using data from the Beyond Ultra-deep Frontier Fields and Legacy Observations (BUFFALO) program. The new lens model is based on 72 multiply lensed galaxies that produce 214 multiple images, making it the largest sample of spectroscopically confirmed lensed galaxies on this cluster. The larger coverage in BUFFALO allowed us to measure the shear up to the outskirts of the cluster, and extend the range of lensing constraints up to ∼1 Mpc from the central region, providing a mass estimate up to this radius. As an application, we make predictions for the number of high-redshift multiply lensed galaxies detected in future observations with theJames WebbSpace Telescope (JWST). Then we focus on a previously known lensed galaxy atz = 1.0054, nicknamed Spock, which contains four previously reported transients. We interpret these transients as microcaustic crossings of SG stars and explain how we computed the probability of such events. Based on simplifications regarding the stellar evolution, we find that microlensing (by stars in the intracluster medium) of SG stars atz = 1.0054 can fully explain these events. The inferred abundance of SG stars is consistent with either (1) a number density of stars with bolometric luminosities beyond the Humphreys-Davidson (HD) limit (Lmax ≈ 6 × 105 L⊙for red stars), which is below ∼400 stars kpc−2, or (2) the absence of stars beyond the HD limit but with a SG number density of ∼9000 kpc−2for stars with luminosities between 105 L⊙and 6 × 105 L⊙. This is equivalent to one SG star per 10 × 10 pc2. Finally, we make predictions for future observations with JWST’s NIRcam. We find that in observations made with theF200Wfilter that reach 29 mag AB, if cool red SG stars exist atz ≈ 1 beyond the HD limit, they should be easily detected in this arc.more » « less
-
Smith, Keith (Ed.)Ultraviolet light from early galaxies is thought to have ionized gas in the intergalactic medium. However, there are few observational constraints on this epoch because of the faintness of those galaxies and the redshift of their optical light into the infrared. We report the observation, in JWST imaging, of a distant galaxy that is magnified by gravitational lensing. JWST spectroscopy of the galaxy, at rest-frame optical wavelengths, detects strong nebular emission lines that are attributable to oxygen and hydrogen. The measured redshift is z= 9.51 ± 0.01, corresponding to 510 million years after the Big Bang. The galaxy has a radius of 16.2-7.2+4.6 parsecs, which is substantially more compact than galaxies with equivalent luminosity at z~ 6 to 8, leading to a high star formation rate surface density.more » « less
-
null (Ed.)ABSTRACT This paper presents a detailed analysis of two giant Lyman-alpha (Ly α) arcs detected near galaxies at z = 3.038 and z = 3.754 lensed by the massive cluster MACS 1206−0847 (z = 0.44). The Ly α nebulae revealed in deep MUSE observations exhibit a double-peaked profile with a dominant red peak, indicating expansion/outflowing motions. One of the arcs stretches over 1 arcmin around the cluster Einstein radius, resolving the velocity field of the line-emitting gas on kpc scales around three star-forming galaxies of 0.3–$$1.6\, L_*$$ at z = 3.038. The second arc spans 15 arcsec in size, roughly centred around two low-mass Ly α emitters of $$\approx 0.03\, L_*$$ at z = 3.754. All three galaxies in the z = 3.038 group exhibit prominent damped Ly α absorption (DLA) and several metal absorption lines, in addition to nebular emission lines such as $$\hbox{He ii}$$\lambda \, 1640$$ and C iii]λλ1906, 1908. Extended Ly α emission appears to emerge from star-forming regions with suppressed surface brightness at the centre of each galaxy. Significant spatial variations in the Ly α line profile are observed which, when unaccounted for in the integrated line, leads to biased constraints for the underlying gas kinematics. The observed spatial variations indicate the presence of a steep velocity gradient in a continuous flow of high column density gas from star-forming regions into a low-density halo environment. A detailed inspection of available galaxy spectra shows no evidence of AGN activity in the galaxies, and the observed Ly α signals are primarily explained by resonant scattering. The study presented in this paper shows that spatially resolved imaging spectroscopy provides the most detailed insights yet into the kinematics of galactic superwinds associated with star-forming galaxies.more » « less
-
The gravitationally lensed supernova Refsdal appeared in multiple images produced through gravitational lensing by a massive foreground galaxy cluster. After the supernova appeared in 2014, lens models of the galaxy cluster predicted that an additional image of the supernova would appear in 2015, which was subsequently observed. We use the time delays between the images to perform a blinded measurement of the expansion rate of the Universe, quantified by the Hubble constant (H0). Using eight cluster lens models, we infer . Using the two models most consistent with the observations, we find . The observations are best reproduced by models that assign dark-matter halos to individual galaxies and the overall cluster.more » « less
-
Abstract In late 2014, four images of supernova (SN) “Refsdal,” the first known example of a strongly lensed SN with multiple resolved images, were detected in the MACS J1149 galaxy-cluster field. Following the images’ discovery, the SN was predicted to reappear within hundreds of days at a new position ∼8″ away in the field. The observed reappearance in late 2015 makes it possible to carry out Refsdal’s original proposal to use a multiply imaged SN to measure the Hubble constantH0, since the time delay between appearances should vary inversely withH0. Moreover, the position, brightness, and timing of the reappearance enable a novel test of the blind predictions of galaxy-cluster models, which are typically constrained only by the positions of multiply imaged galaxies. We have developed a new photometry pipeline that usesDOLPHOTto measure the fluxes of the five images of SN Refsdal from difference images. We apply four separate techniques to perform a blind measurement of the relative time delays and magnification ratios between the last image SX and the earlier images S1–S4. We measure the relative time delay of SX–S1 to be days and the relative magnification to be . This corresponds to a 1.5% precision on the time delay and 17% precision for the magnification ratios and includes uncertainties due to millilensing and microlensing. In an accompanying paper, we place initial and blind constraints on the value of the Hubble constant.more » « less
-
Abstract The gravitationally lensed star WHL 0137–LS, nicknamed Earendel, was identified with a photometric redshift z phot = 6.2 ± 0.1 based on images taken with the Hubble Space Telescope. Here we present James Webb Space Telescope (JWST) Near Infrared Camera images of Earendel in eight filters spanning 0.8–5.0 μ m. In these higher-resolution images, Earendel remains a single unresolved point source on the lensing critical curve, increasing the lower limit on the lensing magnification to μ > 4000 and restricting the source plane radius further to r < 0.02 pc, or ∼4000 au. These new observations strengthen the conclusion that Earendel is best explained by an individual star or multiple star system and support the previous photometric redshift estimate. Fitting grids of stellar spectra to our photometry yields a stellar temperature of T eff ≃ 13,000–16,000 K, assuming the light is dominated by a single star. The delensed bolometric luminosity in this case ranges from log ( L ) = 5.8 to 6.6 L ⊙ , which is in the range where one expects luminous blue variable stars. Follow-up observations, including JWST NIRSpec scheduled for late 2022, are needed to further unravel the nature of this object, which presents a unique opportunity to study massive stars in the first billion years of the universe.more » « less
An official website of the United States government
